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Abstract

Some physicists but many philosophers believe that standard Hilbert
space quantum mechanics faces a serious measurement problem, whose
solution requires a new theory or at least a novel interpretation of stan-
dard quantum mechanics. Itamar Pitowsky did not. Instead, he argued
in a major paper [Pitowski 2006] that quantum mechanics offers a new
theory of probability. In these and other respects his views paralleled
those of QBists (quantum Bayesians): but their views on the objectivity
of measurement outcomes diverged radically. Indeed, Itamar’s view of
quantum probability depended on his subtle treatment of the objectivity
of outcomes as events whose collective structure underlay this new theory
of probability. I’ve always been puzzled by the thesis that quantum me-
chanics requires a new theory of probability, as distinct from new ways
of calculating probabilities that play the same role as other probabilities
in physics and daily life. In this paper I will try to articulate the sources
of my puzzlement. I’d like to be able to think of this paper as a dialog
between Itamar and me on the nature and application of quantum prob-
abilities. Sadly, that cannot be: by taking his part in the dialog I will
inevitably impose my own distant, clouded perspective on his profound
and carefully crafted thoughts.

1 Introduction

Itamar Pitowsky (2003, 2006) developed and defended the thesis that the Hilbert
space formalism of quantum mechanics is just a new kind of probability theory.
In developing this thesis he argued that all features of quantum probability,
including the Born probability rule, can be derived from rational probability
assignments to finite “quantum gambles”. In defense of his view he argued
that all experimental aspects of entanglement, including the Bell inequalities,
are explained as natural outcomes of the resulting probability structure. He
further maintained that regarding the quantum state as a book-keeping device
for quantum probabilities dissolves the BIG measurement problem that affl icts
those who believe the quantum state is a real physical state whose evolution
is always governed by a linear dynamical law; and that a residual small mea-
surement problem may then be resolved by appropriate attention to the great
practical diffi culties attending measurement of any observable on a macroscopic
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system incompatible with readily executable measurements of macroscopic ob-
servables.

This is a bold view of quantum mechanics. It promises to transcend
not only the frustratingly inconclusive debate among so-called realist interpre-
tations (including Bohmian, Everettian, and “collapse” theories) but also the
realist/instrumentalist dichotomy itself. In this way it resembles the pragmatist
approach I have been developing myself ([Healey 2012], [Healey 2017]). Our
views agree on more substantive issues, including the functional roles of quan-
tum states and probabilities and the consequent dissolution of the measurement
problem. But I remain puzzled by Itamar’s central thesis. The best way to
explain my puzzlement may be to show how the points on which we agree mesh
with a contrasting conception of quantum probability. On this rival conception,
quantum mechanics requires no new probability theory, but only new ways of
calculating probabilities with the same formal features and the same role as
other probabilities in physics and daily life.1

The rest of this contribution proceeds as follows. In the next section
I say what Pitowsky meant by a probability theory and explain how he took
quantum probability theory to differ formally from classical probability theory.
The key difference arises from the different event structures over which these are
defined. Whereas classical probabilities are defined over a σ-algebra of subsets
of a set, quantum probabilities are defined over the lattice L of closed subspaces
of a Hilbert space. Gleason’s theorem plays a major role here: for a Hilbert
space of dimension greater than 2, it excludes a classical truth-evaluation on
L but at the same time completely characterizes the class of possible quantum
probability measures on L. Pitowsky sought to motivate the formal difference
between quantum and classical probability theory by an extension of a Dutch
book argument offered in support of a coherence requirement on rational degrees
of belief (in the tradition of Ramsey (1926) and De Finetti (1937)) to a class
of what he called “quantum gambles” associated with possible measurements
on a quantum system. Section 3 explains the extension but questions how well
it justifies the proposed formal modification. A key issue here concerns the
independence of the quantum probability of an event from the context in which
a non-maximal observable containing it is measured.

A quantum gamble may be settled only if there is a viable procedure for
determining which possible event assigned a quantum probability has occurred.
So quantum probabilities are not assigned to past events of which we have only
a partial record, or no record at all. This restricts “matters of fact”to include
only observable records. Section 4 notes how this is in tension with applications
of quantum theory in situations where we have no observable records. It goes on
to consider hypothetical situations to which quantum theory may be applied in
which records may be observable by some but not other observers before these
records are permanently erased so they can no longer be read by any observers.

1That quantum mechanics involves a new way of calculating probabilities is a point made
long ago by Feynman, as Pitowsky himself noted. But Feynman (1951) also says that the
concept of probability is not thereby altered in quantum mechanics. Here I am in agreement
with Feynman, though the understanding he offers of that concept is disappointingly shallow.
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In section 5 I defend an alternative pragmatist view of probability, ex-
plaining how it makes room for a notion of objective probability capable of
rationally constraining the credences of a rational agent. On this view probabil-
ities in quantum theory are defined over a family of Boolean algebras rather than
a single non-Boolean lattice. This is because Born probabilities are defined over
possible outcomes of a physical process represented in one, rather than some
other, classical event space. Models of decoherence may provide a guide as to
what that process is, even though they do not describe the dynamical evolution
of a physical quantum state. Any agent who accepts quantum theory should ad-
just his or her credences to the Born probabilities given by the correct quantum
state for one in that physical situation. Insofar as an agent’s physical situation
constrains what information is available, differently situated agents are correct
to assign different quantum states and to adjust their credences accordingly.
Each agent should update that quantum state (and associated Born probabili-
ties) on accessing newly available information. This is one way a quantum state
provides a book-keeping device for probabilities: the other is provided by its
linear evolution while the system remains undisturbed.

2 Quantum Measure Theory

Pitowsky maintained that quantum probability theory differs from classical
probability theory formally as well as conceptually. Following Kolmogorov,
probability is usually characterized formally as a unit-normed, countably ad-
ditive, measure Pr on a σ-algebra Σ of subsets Ei (i ∈ N) of a set Ω: that
is

Pr : Σ −→ [0, 1] satisfies

1. Pr(Ω) = 1 (Probability measure)

2.Pr
⋃
i

Ei =
∑
i

PrEi provided that ∀i 6= j (Ei ∩ Ej = ∅)

Here Σ forms a lattice which is complemented and distributive, and hence a
Boolean algebra. Pr(Ei) is the probability of the event Ei. Condition 2 is
sometimes weakened to finite additivity.
The closed subspaces {Si} of a Hilbert space H also form a lattice L(H)

whose meet Si ∧ Sj is Si ∩ Sj , and whose join Si ∨ Sj is the smallest closed
subspace containing all elements of Si and Sj . H is the maximal element of
L(H) (denoted by 1) and the null subspace ∅ is the minimal element, denoted
by 0. Each element S has a complement S⊥ consisting of every vector orthogonal
to every vector in S. Indeed, S⊥ is the unique orthocomplement of S. But this
lattice is not distributive and so L(H) is not a Boolean algebra.
A (unit-normed) quantum measure µ on L(H) is defined as follows:

µ : L(H) −→ [0, 1] satisfies

1. µ(1) = 1 (Quantum measure)

2.µ(
∨
i

Si) =
∑
i

Si provided that ∀i 6= j (Si ⊥ Sj)
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Condition 2 may be weakened to finite additivity.
The formal analogy between the conditions defining a probability measure

and those defining a quantum measure motivated Pitowsky’s proposal to inter-
pret µ as a new kind of quantum probability. Accordingly, he referred to the
closed subspaces of H as events, or possible events, or possible outcomes of
experiments. He also took himself to be following a tradition that takes L(H)
as the structure representing the“elements of reality” in quantum theory. Re-
gardless of that tradition, others have also referred to quantum measures on
non-Boolean lattices associated with quantum mechanics as quantum probabil-
ity functions or measures [Earman 2018], [Ruetsche and Earman 2012]. The set
of bounded self-adjoint operators on H forms a von Neumann algebra B(H):
this includes as a subset the set P(B(H)) of projection operators Ê on H. By
virtue of the one-one correspondence between the set of closed subspaces {S}
of H and the operators {ÊS} that project onto them, P(B(H)) also forms a
lattice isomorphic to L(H). This generalizes to von Neumann algebras A other
than P(B(H)) that figure in what Ruetsche (2011) calls extraordinary quantum
mechanics or QM∞.
Gleason’s theorem [Gleason 1957] completely characterizes the class of quan-

tum measures on the lattice of closed subspaces of a Hilbert space of dimension
greater than 2.

Gleason’s Theorem: If H is a (separable) Hilbert space of dimension
greater than 2 and µ is a (unit-normed) quantum measure on L(H),
then there is a positive self-adjoint operator Ŵ of trace 1 such that,
for every element ÊS of P(B(H)), µ(S) = Tr(Ŵ ÊS).

This theorem has two important consequences. The first is that there are no
dispersion-free measures on L(H) if dim(H)> 3, where a quantum measure µ is
dispersion-free if and only if its range is the set {0, 1}. This is important since
any truth-valuation on the set of all propositions stating that it is event S or
instead event S⊥ that represents an element of reality would have to give rise to
a dispersion-free quantum measure on L(H). This, of course, is why Gleason’s
theorem and similar results (e.g. [Kochen and Specker 1967], [Bell 1966] are
considered important “no-hidden variable”results. While it may be understood
as the outcome of an experiment, an event S may not be (uniformly) understood
as simply the independently existing state of affairs that experiment serves to
reveal.
The second important consequence of Gleason’s theorem is that every (unit-

normed) quantum measure on L(H) (dim(H) > 3) uniquely extends to the Born
probability measure associated with a quantum state, as represented by a vector
in or density operator on H. Indeed, this is true even if the quantum measure
is merely finitely additive. This consequence is not surprising, since the Born
rule may be stated in the form

Pr Ŵ (A ∈ ∆) = Tr(Ŵ Ê(∆)) (Born rule)

where the quantum state is represented by density operator Ŵ and Ê(∆) is
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the relevant projection operator from the spectral family defined by the unique
self-adjoint operator Â corresponding to dynamical variable A.
Cognizant of the first consequence of Gleason’s theorem, Pitowsky did not

defend the radical thesis that quantum theory shows the world obeys a non-
classical logic. But he took the second consequence as “one of the strongest
pieces of evidence in support of the claim that the Hilbert space formalism is
just a new kind of probability theory”([Pitowski 2006], p.222).

3 Quantum Gambles

Pitowsky developed his conception of quantum probability within the Bayesian
tradition pioneered by Ramsey (1926) and De Finetti (1937). This tradition
locates probabilities in an agent’s rationalized degrees of belief. A necessary,
though possibly insuffi cient, condition for such degrees of belief to be rational
is that they be (what has come to be called) coherent.
In this tradition, belief and its degrees are dispositions manifested not by

self-avowal but in actions. The condition of coherence is understood in terms
of the agent’s dispositions to accept a set of wagers at various odds offered
by a hypothetical bookie. A set of degrees of belief is coherent just in case it
corresponds to a set of such dispositions that is not guaranteed to result in a
loss if collectively manifested no matter what the outcome of all the bets in
the set. Degrees of belief that are not coherent are said to allow a Dutch book
to be made against the agent who has them. So-called synchronic Dutch book
theorems are then taken to show that any coherent set of degrees of belief in a
set of propositions may be represented by a (classical) probability measure over
them.
Following Lewis (1980) an agent’s coherent set of degrees of belief are called

his or her credences. For a subjectivist like De Finetti, there is no further notion
of objective probability at which a rational agent’s credences should aim. Lewis
(1980) disagreed. Instead he located a distinct concept of objective probability
he called chance, of which all we know is that it provides a further rational con-
straint on an agent’s credences through what he called the Principal Principle.
I defer further consideration of this principle until section 5, since it plays no
role in Pitowsky’s own view of quantum probability theory.
According to Pitowsky (2006), a quantum gamble consists of four steps:

1. A single physical system is prepared by a method known to
everybody.

2. A finite setM of incompatible measurements, each with a finite
number of possible outcomes, is announced by the bookie. The agent
is asked to place bets on the possible outcomes of each one of them.

3. One of the measurements in the setM is chosen by the bookie and
the money placed on all other measurements is promptly returned
to the agent.
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4. The chosen measurement is performed and the agent gains or
loses in accordance with his bet on that measurement.

Here M is identified with a set of Boolean algebras {B1,B2, ...,Bk}, each
generated by the possible outcomes in L of the measurement to which it corre-
sponds. The elements of B = {S1, S2, ...Sm} ∈ M will not all be one-dimensional
subspaces if M is not a maximal measurement. Pitowsky (2006, p.223) main-
tained that “by acting according to the standards of rationality the gambler
will assign probabilities to the outcomes”. He took the gambler in question to
recognize identities in the logical structure consisting of the outcomes in L, and
in particular the cases in which the same outcome is shared by more than one
experiment (i.e. type of measurement inM.) But, crucially, this gambler was
not assumed to know quantum mechanics.
Pitowsky then argued (2006, p.227: Corollary 7) that any such quantum

gambler not meeting these standards of rationality must assign probability val-
ues to elements of a finite sublattice Γ0 ⊂ L(H) (dim(H) ≥ 3) that cannot be
extended to a quantum measure on a finite Γ ⊃ Γ0. He took this conclusion to
establish the claim that quantum theory is a new theory of probability
Notice that this argument is not offered as a derivation of the Born rule

insofar as it does not mention the quantum state Ŵ used in stating that rule. It
concludes only that a rational agent’s credences should be consistent with the
probabilities specified by quantum mechanics through application of the Born
rule to some quantum state. Instead, this conclusion is presented as justification
for the claim that quantum probability is quantum measure theory: but is it
warranted?
How do the standards of rationality constrain a quantum gambler’s assign-

ments of “probabilities”(i.e. degrees of belief) to outcomes in L? Assume that
for every B ∈M such an agent assigns degree of belief cr(S|B) to outcome S of
a measurement corresponding to B. Pitowsky took the standards of rationality
to require the agent to assign degrees of belief in accordance with two rules (in
my notation):

RULE 1: For each measurement B ∈ M the function cr(•|B) is a
probability distribution on B.
RULE 2: If B1, B2 ∈ M, and S ∈ B1∩B2 then cr(S|B1) = cr(S|B2).

Rule 1 is imposed to insure the coherence of the agent’s degrees of belief
concerning the possible outcomes of a single measurement: If the agent’s degrees
of belief do not confirm to this rule they will dispose him or her to accept bets
on these outcomes guaranteed to lead to a sure loss. This is the standard
Dutch book argument as to why a rational agent’s degrees of belief must be
representable as a (finitely additive) probability measure.
The force of such Dutch book arguments has been a topic of extended de-

bate among philosophers of probability, and alternative arguments have been
offered as to why a rational agent’s degrees of belief should be representable
as probabilities. Briefly stated, here are three standard objections seeking to
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undermine the Dutch book argument: A rational agent may simply refuse to
bet: his betting behavior may fail to reveal his degrees of belief insofar as it is
a function of the rest of his cognitive and affective state: agents have degrees
of belief in propositions whose truth-value cannot be determined because there
is no corresponding settleable outcome. I will not press either of the first two
objections now. Pitowsky did anticipate this third objection by requiring that
there be a viable procedure for determining which possible event assigned a
quantum probability has occurred, and I will pursue this issue in section 4.
Rule 2 requires a quantum gambler’s credences to be non-contextual, in the

sense that he or she have the same degree of belief in the truth of propositions
stating the outcome of a measurement of a non-maximal observable no matter
what type of measurement led to that outcome. It is a remarkable fact about
the Born rule of quantum mechanics that the probabilities it yields are non-
contextual in this sense. But Pitowsky’s gambler cannot be assumed to know
quantum mechanics. So why should the quantum gambler’s credences be non-
contextual?
Pitowsky (2006, p.216) first addresses this question in section 2.1 as follows

(emphases in the original):

...the identity of events which is encoded by the structure also in-
volves judgments of probability in the sense that identical events
always have the same probability. This is the meaning of accepting
a structure as an algebra of events in a probability space.

Here he takes the structure of events to be the lattice L(H) of subspaces of
some Hilbert space H whose Boolean sublattices correspond to measurements
on a quantum system, some incompatible with others. Application of quantum
theory’s Born rule turns L(H) into a quantum measure space when quantum
state Ŵ generates a subspace measure µ through µ(S) = Tr(Ŵ P̂S), where P̂S
is the (unique) projection operator onto subspace S ∈ L(H). But so far we have
been offered no reason to regard L(H) as a probability space.

The Dutch book argument Pitowsky took to require a rational quantum
gambler’s credences to conform to Rule 1 does not require that agent’s credences
to conform to Rule 2. To the extent that argument is successful, it establishes
only that each Boolean subalgebra B of L(H) corresponding to a measurement
inM may be taken to define a σ-algebra of subsets of R representing possible
outcomes of that measurement, and in that sense B is a (subjective) probability
space. Additional argument is needed to justify the claim that the full lattice
L(H) is a probability space.
The argument Pitowsky (2006, p.216) offers in section 2.1 proceeds by anal-

ogy to a classical application of probability theory to games of chance:

Consider two measurements A, B, which can be performed together;
and suppose that A has the possible outcomes a1, a2, ..., ak, and B
the possible outcomes b1, b2, ..., br. Denote by {A = ai} the event
“the outcome of the measurement of A is ai”, and similarly for {B =
bj}. Now consider the identity:
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{B = bj} =
k⋃
i

({B = bj} ∩ {A = ai}) (1)

This is the distributivity rule which holds in this case as it also holds
in all classical cases. This means, for instance, that if A represents
the roll of a die with six possible outcomes and B the flip of a coin
with two possible outcomes, then Eq.(1) is trivial. Consequently the
probability of the left hand side of Eq.(1) equals the probability of
the right hand side, for every probability measure.

In a classical joint probability space the event {B = bj} occurs if and only
if some outcome {B = bj} ∩ {A = ai} occurs, and so the identity Eq.(1) holds
trivially. If instead the event {B = bj} is the outcome of a trial with a set
of possible outcomes {{B = bn} : n = 1, ..., N}, then it is not trivial that
the probability of the left hand side of Eq.(1) equals the probability of the
right hand side, since these concern probabilities in different trials with different
probability spaces. We would be astonished if a fair coin always came up heads
whenever a die was rolled at the same time, but that is because we have empirical
reasons to discount the influence of dice rolls on the outcomes of simultaneous
coin tosses.
Pitowski draws an analogy between Eq.(1) (as applied to compatible quan-

tum measurements or coin flips and dice rolls) and Eq.(2):

k⋃
i

({B = bj} ∩ {A = ai}) = {B = bj} =
l⋃
i

({B = bj} ∩ {C = ci}) (2)

In this equation, A,B,C, are quantum observables such that [A,B] = 0, and
[B,C] = 0 but [A,C] 6= 0, and c1, c2, ..., cl are the possible outcomes of C. Since
A,C are incompatible observables they are not jointly measurable. Accordingly,
the Born rule of quantum mechanics does not assign joint probabilities to events
such as {A = am}, {C = cn}. Unlike the events {A = am}, {B = bn} in Eq.(1),
such events are not elements of any (classical) probability space acknowledged by
quantum mechanics. Indeed, as Fine (1982) showed, the joint Born probabilities
for a some sets of pairwise compatible observables are not marginals of any
(classical) joint probability distribution. Eq.(2) expresses a trivial identity in a
lattice L(H) if ∪,∩ are read as join and meet operations in the lattice. But they
cannot generally be read as set-theoretic union and intersection of elements of
a σ-algebra of subsets of a set of outcomes of a (classical) probability space.
In a way, this was Pitowsky’s point. He used the analogy only to motivate

his proposal that quantum probability is different from classical probability in
just this way. As he put it ([Pitowski 2006], pp.216-7)

I assume that the 0 of the algebra of subspaces represents impossi-
bility (zero probability in all circumstances) 1 represents certainty
(probability one in all circumstances), and the identities such as
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Eq.(1) and Eq.(2) represent identity of probability in all circum-
stances. This is the sense in which the lattice of closed subspaces
of the Hilbert space is taken as an algebra of events. I take these
judgments to be natural extensions of the classical case; a posteriori,
they are all justified empirically.

However, his argument for this proposal was supposedly based on rational-
ity requirements on the credences of a quantum gambler ignorant of quantum
mechanics, and here empirical considerations are out of place. If probability
just is rational credence, then a requirement of rationality cannot be based on
empirical considerations of the kind that are taken to warrant acceptance of
quantum mechanics and the non-contextuality of probabilities consequent on
application of the Born rule. Immediately after stating Rule 2, Pitowsky (2006)
says that this follows from an identity between events essentially equivalent to
Eq. (2), and the principle that identical events in a probability space have equal
probabilities. But, as we have seen, that principle applies automatically only
when these events are part of a single probability space, corresponding to a
single trial or measurement context. A lattice L(H) is naturally understood as
a quantum measure space, but only its Boolean subspaces are naturally under-
stood as probability spaces. Pitowsky’s appeal to rationality requirements on a
quantum gambler does not justify his thesis that quantum theory is a new kind
of probability theory.

4 Objective knowledge of quantum events

In the language of probability theory, the term ‘event’may be used to refer
either to a mathematical object (such as a set) or to a physical occurrence.
When arguing that the Hilbert space formalism of quantum mechanics is a
new theory of probability, Pitowsky took that theory to consist of an algebra
of events, and the probability measure defined on it. Events in this sense are
mathematical objects– subspaces of a Hilbert space. But to each such object
he also associated a class of actual or possible physical occurrences– outcomes
of an experiment in which a quantum observable is measured. A token physical
event eS occurs just in case in a measurementM of observable O the outcome is
oi, an eigenvalue of Ô with eigenspace S. Here M is a token physical procedure
corresponding to the mathematical object BM , a Boolean subalgebra of a lattice
L(H) of subspaces including S, where Ô is a self-adjoint operator on H.
When a quantum gamble is defined over a setM of incompatible measure-

ments, each of these is characterized by the corresponding Boolean subalgebra
of L(H). A token event eS settles a gamble if it is the outcome of an actual
measurement procedure M corresponding to the mathematical object BM ∈
M, where the bookie chose to perform M rather than some other measure-
ment in the gamble. Following the subjectivist tradition pioneered by Ramsey,
Pitowsky stressed that, for a quantum gamble to reveal an agent’s degrees of
belief, the outcome of whatever measurement is chosen by the bookie must be
settleable.
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A proposition that describes a possible event in a probability space
is of a rather special kind. It is constrained by the requirement that
there should be a viable procedure to determine whether the event
occurs, so that a gamble that involves it can be unambiguously de-
cided. This means that we exclude many propositions. For example,
propositions that describe past events of which we have only a partial
record, or no record at all. ([Pitowsky 2003], p.217)

Recall that in section 2.2 we restricted ”matters of fact”to include
only observable records. Our notion of “fact”is analytically related
to that of “event”in the sense that a bet can be placed on x1 only if
its occurrence, or failure to occur, can be unambiguously recorded.
(op. cit., p.231)

In the previous section I questioned the force of Pitowsky’s argument that
a rational agent’s degrees of belief in the outcomes of quantum gambles will be
representable as a quantum probability measure on L(H). But even if that ar-
gument were sound it would not extend to all uses of probability in applications
of quantum theory. The Born rule may be legitimately applied to propositions
concerning events whose outcomes are unknown or even unknowable. For such
events there is no viable procedure to determine what the outcome is, so there is
no settleable quantum gamble involving these events. An agent acting accord-
ing to the standards of rationality associated with a quantum gamble need not
assign any probabilities to the possible outcomes of such an event: rules 1 and
2 need not apply. Such a rational agent may have degrees of belief concerning
these outcomes that cannot be represented as a quantum measure on a corre-
sponding L(H) even though each outcome has a well-defined Born probability.
Quantum theory is often applied to occurrences in distant spacetime regions

from which no observable records are accessible. These include processes in
the center of stars (including the cores of neutron stars) and quantum field
fluctuations in the early universe. There is no restriction on the application
of the Born rule to calculate probabilities of outcomes associated with such
processes. Of course these cannot be understood as the outcomes of experiments
since no experimenters could have been present in those regions. But the Born
rule is commonly applied to yield probabilities of outcomes of processes in which
no experiment is involved, whether or not these are referred to as measurements.
The notion of measurement is notoriously obscure in quantum mechanics, as Bell
forcefully pointed out in his article “Against ‘Measurement’”. But even there
he posed the rhetorical question

If the theory is to apply to anything but highly idealized labo-
ratory operations, are we not obliged to admit that more or less
‘measurement-like’processes are going on more or less all the time,
more or less everywhere? ([Bell 2004], p.216)

These days references to measurement are often replaced by talk of deco-
herence, though it is now generally acknowledged that if there is a serious mea-
surement problem then appeals to decoherence will not solve it. While agreeing
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with Pitowsky that there is no BIG measurement problem, in the next section
I will indicate how quantum models of decoherence may be used as guides to
the legitimate application of the Born rule in a pragmatist view of quantum
mechanics. But in this view a proposition to which the Born rule assigns a
probability does not describe the outcome of a measurement but the physical
event of a magnitude taking on a value, whether or not this is precipitated by
measurement.
Even when a magnitude (a.k.a. observable) takes on a value recording the

outcome of a quantum measurement, that record may be subsequently lost,
at which point Pitowsky’s view excludes any event described by a proposition
about that outcome from a quantum probability space. While such scruples may
not be out of place in the context of a quantum gamble, only an indefensible
form of verificationism would prohibit retrospective application of the Born rule
to that event. So quantum mechanics permits application of the concept of
probability in circumstances in which it cannot be understood to be defined on
a space of events consistent with Pitowsky’s view.
One might object that no record of a measurement outcome is ever irretriev-

ably lost. But recent arguments ([Healey 2018], [Leegwater 2018]) challenge
such epistemic optimism in the context of Gedankenexperimenten based on de-
velopments of the famous Wigner’s friend scenario. These arguments threaten
the objectivity of measurement outcomes under the assumption that unitary,
no—collapse single-world quantum mechanics is applicable at all scales, even
when applied to one observer’s measurement on another observer’s lab (includ-
ing any devices in that lab recording the outcomes of prior quantum measure-
ments). It is characteristic of these arguments that an observation by one ob-
server on the lab of another completely erases all of the latter’s records of the
outcome of his or her prior quantum measurement. As Leegwater (2018, p.13)
put it

such measurements in effect erase the previous measurement’s result;
they must get rid of all traces from which one can infer the outcome
of the first measurement.

In this situation, the first observer’s measurement outcome was a real phys-
ical occurrence, observable by and (then) known to that observer. But the
second observer’s measurement on the first observer’s lab erased all records of
that outcome, and neither of these observers, nor any other observer, can subse-
quently verify what it was. Indeed, even the first observer’s memory of his own
result has been erased. This is clearly a situation in which Pitowsky would have
excluded the event corresponding to the first observer’s measurement outcome
from any probability space. For in no sense does a true proposition describing
that outcome state (what he called) a “matter of fact”.
I wonder what Pitowsky would have made of these recent arguments. Leeg-

water (2018) presents his argument as a “no-go”result for unitary, no—collapse
single-outcome (relativistic) quantum mechanics, while Healey (2018) takes the
third argument he considers to challenge the objectivity of measurement out-
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comes. Brukner (2018) formulates a similar argument in a paper entitled “A
no-go theorem for observer-independent facts”, in which he says

We conclude that Wigner, even as he has clear evidence for the oc-
currence of a definite outcome in the friend’s laboratory, cannot as-
sume any specific value for the outcome to coexist together with the
directly observed value of his outcome, given that all other assump-
tions are respected. Moreover, there is no theoretical framework
where one can assign jointly the truth values to observational propo-
sitions of different observers (they cannot build a single Boolean
algebra) under these assumptions. A possible consequence of the
result is that there cannot be facts of the world per se, but only
relative to an observer, in agreement with Rovelli’s relative-state in-
terpretation, quantum Bayesianism, as well as the (neo)-Copenhagen
interpretation.

Pitowsky founded his Bayesian approach to quantum probability on the no-
tion of a quantum gamble, from which he excluded propositions about measure-
ment outcomes that describe past events of which we have only a partial record,
or no record at all. This strongly suggests that he would be unwilling to coun-
tenance applications of quantum theory to propositions about measurement
outcomes stating observer-dependent facts. His tolerance of agent-dependent
probabilities did not extend to acquiescence in non-objective facts about their
subject matter. The paper by Hemmo and Pitowsky (2007) criticized the way
many-worlds interpretations of quantum mechanics understood the use of prob-
ability in quantum mechanics. So Pitowsky would almost certainly have rejected
the option of evading the conclusion of recent non-go arguments by countenanc-
ing multiple outcomes of a single quantum measurement. I speculate that his
response to these arguments would have been to follow von Neumann by re-
jecting the assumption that unitary quantum mechanics may be legitimately
applied to the measurement process itself.

5 A pragmatist view of quantum probability

As we saw in section 3, Pitowsky’s Bayesian view of quantum probability re-
lied on his Rule 1, which requires an agent’s degrees of belief in the possible
outcomes of a quantum measurement characterized by a Boolean algebra B to
be a (finitely additive) probability measure on the associated algebra of sets.
Here he followed in the tradition of Ramsey and de Finetti, who first employed
synchronic Dutch book arguments in support of the probability laws as stan-
dards of synchronic coherence for degrees of belief. But each of them also took
an agent’s betting behavior as a measure of his or her degrees of belief, giving
operational significance to the numerical probabilities by which these could be
represented. Pitowsky quoted Ramsey as follows:

“The old-established way of measuring a person’s belief ”by propos-
ing a bet, and seeing what are the lowest odds which he will accept,
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is “fundamentally sound”. ([Pitowski 2006], p.223)

If degrees of belief are to be behaviorally defined in terms of betting be-
havior, then it is essential that these bets be settleable– as Pitowsky insisted.
But operational definitions of individual cognitive states like beliefs and desires
or preferences are now commonly regarded as inadequate. These are better
understood within a broadly functionalist approach to the mind in which the
behavioral manifestations of an individual belief are a function of many, if not
all, an agent’s other cognitive states. Even if there are such things as degrees of
belief, these cannot be reliably measured by an agent’s betting behavior of the
kind that figures in an argument intended to show that a (prudentially) rational
agent’s degrees of belief will be representable as probabilities.
A Dutch book argument may still be used to justify Bayesian coherence

of a set of degrees of belief as a normative condition on epistemic rationality,
analogous to the condition that a rational agent’s full beliefs be logically com-
patible. The view that ideally rational degrees of belief must be representable
as probabilities has been called probabilism ([Christensen 2004], p.107): such
degrees of belief are known as credences. The force of a Dutch book argument
for probabilism is independent of whether there are any bookies or whether bets
in a book are settleable. Understood this way, Rule 1 is justified as a condition
of epistemic rationality on degrees of belief in a quantum event, whether or not
a gamble that involves it can be unambiguously decided.
Probabilism places only minimal conditions on the degrees of belief of an in-

dividual cognitive agent, just as logical compatibility places only minimal condi-
tions on his or her full beliefs. Pitowsky sought to justify additional conditions,
suffi cient to establish the result that a rational agent’s credences in quantum
events involving a system be representable by a quantum measure on the lattice
L(H) of subspaces of a Hilbert space H associated with that system (provided
that dim(H) > 3). This was the key result he took to justify his claim that the
Hilbert space formalism of quantum mechanics is a new theory of probability.
Achieving this result depended on Rule 2: the further condition that a ra-

tional agent’s credence in a quantum event represented by subspace S ∈ L(H)
be the same, no matter whether it occurs as an outcome of measurement M1

(represented by Boolean sub-lattice B1 ⊂ L(H)) or M2 (represented by B2).
Pitowsky took Rule 2 to follow from the identity between events, and the prin-
ciple that identical events in a probability space have equal probabilities. As
embodied in Eq. (2), Pitowsky took these judgments to be natural extensions
of the classical case (as embodied in (1)): and he said of these judgments “a
posteriori, they are all justified empirically”.
This justification for Rule 2 is quite different from the justification offered

for Rule 1, which was justified not empirically but as a normative requirement
on epistemic rationality. As such, Rule 1 showed why an epistemically rational
agent should adopt degrees of belief representable as probabilities over a classical
probability space of events associated with each Boolean subalgebra B of L(H):
in that sense, it justified considering B as a probability space. It is because no
analogous normative requirement justifies taking L(H) itself to be a probability
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space that Pitowsky appealed instead to empirical considerations. But while
such empirical considerations may justify the introduction of a quantum measure
µ over L(H) as a convenient device for generating a posteriori justified objective
probability measures over Boolean subalgebras of L(H), this does not show that
µ is itself a probability, or L(H) a probability space. Only by appeal to some
additional normative principle of epistemic rationality could a Bayesian in the
tradition of Ramsey and de Finetti attempt to show that.
The bearing of empirical considerations on credences has been a controversial

issue among Bayesians. De Finetti maintained that there is nothing more to
probability than each agent’s actual credences. Ramsey allowed that probability
in physics may require more, and in this he has been followed by the physicist
Jaynes (2003) and other objective Bayesians. Contemporary QBists portray
the Born rule as an empirically motivated additional normative constraint on
credences [Fuchs and Schack 2013], while most physicists still follow Feynman
in seeking an objective correlate of probability in stable frequencies of outcomes
in repeated experimental trials.
Lewis believed that objective probability required the kind of indeterminism

generally thought to be manifested by radioactive decay. He took orthodox
quantum mechanics to involve such indeterminism, with objective probabilities
supplied by the Born rule serving as paradigm instances of what he called chance.
Lewis (1980) formulated the Principal Principle he took to state all we know
about chance by linking this to credence. He later proposed a modification to
square it with his Humean metaphysics. But Ismael (2008) argued that the
modification was a mistake, and essentially restated his original principle. In
Lewis’s (1994, pp.227-8) words,

If a rational believer knew that a chance of [an event e] was 50%,
then almost no matter what he might or might not know as well,
he would believe to degree 50% that [e] was going to occur. Almost
no matter, because if he had reliable news from the future about
whether e would occur, then of course that news would legitimately
affect his credence.

There is now a large literature on how a Principal Principle should be stated,
and how, if at all, it may be justified. This includes Ismael’s helpful formulation
as an implicit definition of a notion of chance:

The [modified Lewisian] chance of A at p, conditional on any in-
formation H p about the contents of p’s past light cone satisfies:
Crp(A/Hp) =df Chp(A).

Lewis was right to add to credence a second, more objective, concept of
probability: but he was wrong to restrict its application to indeterministic con-
texts. The physical situation of a localized agent frequently imposes limitations
on access to relevant information about an event about whose occurrence he or
she wishes to form reasonable credences. This occurs, for example, in so-called
games of chance and in classical statistical mechanics as well as in the quantum
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domain. In such situations general principles or a physical theory may provide
a reliable way of “packaging”the accessible information in a way that permits
generally reliable inferences and appropriate actions. That is how I understand
the role of the Born rule in quantum mechanics. To accept quantum mechanics
is to grant the Born rule objective authority over one’s credences in quantum
events and thereby regard it as epistemic expert in this context.
The Born rule associates a set of general probabilities to events of certain

types involving a kind of physical system assigned a quantum state. The phys-
ical situation of an actual or merely hypothetical agent gives that agent access
to information about the surrounding circumstances that may be suffi cient to
assign a specific quantum state to one or more individual systems. Differently
situated agents should sometimes correctly assign different quantum states be-
cause different information is accessible to each. This may occur just because
the agents do not share a single spacetime location, in conformity to Ismael’s
modified Lewisian chance: Born probabilities supply many examples of such ob-
jective probabilities. After a specific quantum state is assigned to an individual
system, the Born rule yields a probability measure over events of certain types
involving it. By instantiating the general Born rule, the agent may then derive
an objective chance distribution over possible events.
This is a classical probability distribution over an event space with the struc-

ture of a Boolean algebra B, not a quantum measure over a non-Boolean lattice:
in a legitimate application of the Born rule no probability is assigned to events
that are not elements of B. Events assigned a probability in this way are given
canonical descriptions of the form Qs ∈ ∆, where Q is a dynamical variable
(observable), s is a quantum system, and ∆ is a Borel set of real numbers: I call
Qs ∈ ∆ a magnitude claim. Some of these events are appropriately redescribed
as measurement outcomes: for others, this redescription is less appropriate.
Probability theory had its origins in a dispute concerning dice throws, so it

may be helpful to draw an analogy with applications of probability theory to
throws of a die. The faces of a normal die are marked in such a way that the
point total of opposite faces sums to 7, and the faces marked 4, 6 meet on one
edge of the die. Consider an evenly weighted die that includes a small amount
of magnetic material carefully distributed throughout its bulk. This die may
be thrown onto a flat, level surface in one or other of two different kinds of
experiments: a magnetic field may be switched on or off underneath the surface
as the die is thrown. In an experiment with the magnetic field off, a throw
of the die is fair, so there is an equal chance of 1/6 that each face will land
uppermost. (Notice that, though natural, this use of the term ‘chance’does not
conform to Lewis’s Principal Principle– even in Ismael’s modified formulation–
since it does not presuppose that dice throws are indeterministic processes.) In
an experiment with the magnetic field on, the die is biassed so that some faces
are more likely to land uppermost than others. But because of the careful
placement of the magnetic material within the die, the chance is still 1/3 that
a face marked 4 or 6 lands uppermost.
In each kind of experiment, a probabilistic model of dice-throwing may be

tested against frequency data from repeated dice throws of that kind. This
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model includes general probability statements of the form PX(E) = p specifying
the probability of an event of type E describing a possible outcome of a throw
of the die in an experiment of type X. Consider the situation of an actual or
hypothetical agent immediately prior to an individual throw of the die. The
information accessible to this agent does not include the outcome of that throw:
nor could it include all potentially relevant microscopic details of the initial
and boundary conditions present in that throw, even if it were a deterministic
process. But it does include knowledge of whether the magnetic field is on or
off: failure to obtain this relevant, accessible information would be an act of
epistemic irresponsibility.
Having accepted a probabilistic model on the evidence provided by relative

frequencies of different outcome types in repeated throws of both kinds, this
actual or hypothetical agent has reason to instantiate the general probability
statement of the form PX(E) = p for each possible event e of type E in ex-
periment x of kind X. The result is the chance of e in x– that to which an
epistemically rational agent should match his or her credence concerning event
e in experiment x. What that chance is may depend on the experiment x. If
e is an event of face 1 landing uppermost, then the chance of e may be less if
the magnetic field is on in x than it would have been if the field had been off.
But if e′ is the event of a prime-numbered face landing uppermost, then the
chance of e′ is 2/3 both in experiment x (magnetic field off) and in experiment
x′ (magnetic field on).
Here is the analogy between this dice-throwing example and quantum prob-

abilities. In both cases there are general probability rules that may be instan-
tiated to give chances to which an (actual or hypothetical) rational agent who
accepts those rules should match his or her credences in circumstances of the
kind specified by the rule. In both cases these circumstances may be described
as those of an experiment, but in neither case is this description essential– no
experimenter need be present if the circumstances occur naturally.
In both cases a possible event of a certain type may be assigned the same

chance in different circumstances, describable as experiments of different kinds.
Both cases feature non-contextual probability assignments to events of the same
type. There is no temptation to combine the classical probability spaces corre-
sponding to different kinds of experiment in the dice-throwing example into a
single non-classical event space. The rich formal structures to which Pitowsky
appealed in the quantum case have no analog in the dice-throwing example.
But I remain unpersuaded that the absence of any corresponding structures in
the dice-throwing example undermines the force of the analogy.
It is the physical circumstances in which a system finds itself that determine

which applications of the Born rule are legitimate (if any), and which are not.
Quantum mechanics itself does not specify these circumstances, but physicists
have developed reliable practical knowledge of when they obtain. Quantum
models of decoherence can provide useful guidance in judging whether and which
application of the Born rule is legitimate, by selecting an appropriate Boolean
algebra B of events corresponding to a so-called “pointer basis”of subspaces of
the Hilbert space Hs of s. Here s will typically differ from the target system t
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to which a quantum state has been assigned in order to apply the Born rule.
Models of decoherence are neither suffi cient nor necessary to solve any BIG

measurement problem: there is no such problem. That problem would arise
only on the mistaken assumption that a quantum state specifies all the physical
properties of the system to which it is assigned. But I agree with Pitowsky
that a quantum state does not do this: instead, it acts as a book-keeping device
for a rational agent’s credences by requiring them to conform to the associated
Born rule probabilities. Quantum mechanics cannot explain why measurements
have definite outcomes, since application of its Born rule presupposes that they
do. But since a quantum state does not specify its physical condition, there is
no tension between a system’s being assigned a superposed state and the truth
of a magnitude claim that it has a particular eigenvalue of the corresponding
operator.
The Born rule is legitimately applied only to significant magnitude claims.

The significance of a magnitude claim is not certifiable in terms of truth-
conditions in some kind of “quantum semantics”. In my pragmatist view, the
significance of any claim arises from its place in an inferential web of statements,
ultimately linked to perception and action through practical rather than theo-
retical inference. This inferentialist “metasemantics”supports an analog rather
than digital view of the content of each magnitude claim as coming in degrees
rather than making the claim simply meaningful or meaningless. Though ex-
traordinarily rapid, complete, and practically irreversible, decoherence is also
a matter of degree in applicable quantum models. It follows that there can
be no sharp line dividing meaningful from meaningless magnitude claims, or
legitimate from illegitimate applications of the Born rule.
This sheds light on the import of the arguments discussed in the previous

section purporting to show that the universal applicability of unitary quantum
mechanics is incompatible with the assumption that quantum measurements
always have unique, objective outcomes. In my pragmatist view, the outcome
of a quantum measurement can be stated in a magnitude claim Qs ∈ ∆ about a
system s that may be thought of as a measuring apparatus. The claim Qs∈∆
is true at a time if and only if (the value of) Qs is then an element of ∆.
But Qs∈∆ derives its content not through this (trivial) truth-condition, but
through the reliable inferences into which the claim then enters.
In ordinary circumstances we assume that observation of an experimenter’s

laboratory records is a reliable way for anyone to determine the outcome of a
quantum measurement in that laboratory. Indeed, that is a common under-
standing of what it is for the measurement to have a unique, objective outcome.
But this assumption breaks down in the extreme circumstances of Gedanken-
experimenten like those that figure in arguments considered in [Healey 2018],
[Leegwater 2018]. In such circumstances an observer in an initially physically
isolated laboratory will correctly report the outcome of his experiment even
though another observer may report a different outcome after subsequently en-
tering that laboratory and making her own observations of its records. Moreover
these observers will not then register any disagreement, since all of the first ob-
server’s initial records (including memories) will have been erased by the time
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of the second observation.
In such cases, processes modeled by decoherence confined to the first ob-

server’s laboratory rendered reliable a host of inferences based on magnitude
claims stating records of his quantum measurement. This endowed these claims
with a high degree of significance, so his observations warranted him in taking
them truly to state the unique, physical outcome of his measurement. But the
extraordinary circumstances of the Gedankenexperiment in fact restrict the do-
main of reliability to the context internal to the laboratory within which these
processes were confined. There is a wider context that includes subsequent
physical processes coupling that laboratory to a second observer and her labo-
ratory. In that wider context, inferences based on the magnitude claims stating
records of his quantum measurement cease to be reliable, thereby curtailing the
significance of these claims, which were nevertheless true in the context in which
he made them.
In my pragmatist view, quantum measurements would have unique, phys-

ical outcomes even in extraordinary circumstances like those described in the
Gedankenexperimenten that figure in the arguments considered in [Healey 2018],
[Leegwater 2018]. The outcomes could be described by true magnitude claims
about individual experimenters’ physical records of them. Some such claims
made by different experimenters may seem inconsistent. But the inconsistency
is merely apparent. A correct understanding of these claims requires that their
content be relativized to the physical context to which they pertain. So con-
textualized, each experimenter in one of these Gedankenexperimenten can allow
the objective truth of the others’reports of each of their unique measurement
outcomes while consistently stating the outcome of his or her own measurement.
This implicit limitation on the content of observation reports of the outcomes

of quantum measurements may usually be neglected. Quantum decoherence is
so pervasive that we will never be able to realize the extraordinary circumstances
required by the Gedankenexperimenten that figure in the arguments considered
in [Healey 2018], [Leegwater 2018]: even a powerful quantum computer would
not constitute an agent capable of performing and reporting the outcome of a
quantum measurement in a physically isolated laboratory. Because we all in-
evitably share a single decoherence context, true reports of the unique, physical
outcomes of quantum measurements provide the objective data that warrant
acceptance of the theory we use successfully to predict their objective probabil-
ities.

6 Conclusion

Quantum mechanics is not a new theory of probability. On the contrary, it con-
stitutes perhaps our most successful deployment of classical probability theory
in physics. It is not only the mathematics of probability that are classical here:
the concept itself functions in basically the same way in quantum mechanics
that it always has. This function is as a source of expert, “pre-packaged”advice
to an actual or merely hypothetical situated agent on how strongly to believe
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statements whose truth-value that agent is not in a position to determine from
the accessible information.
Quantum probabilities may be represented by means of quantum measures

on non-Boolean lattices, in which case Gleason’s theorem offers an elegant char-
acterization of the range of quantum probabilities yielded by applications of the
Born rule. But a quantum measure is not a probability measure, and the lattice
of closed subspaces of a Hilbert space is not a probability space, despite the
non-contextuality of quantum probabilities.
Dutch book arguments for synchronic coherence support an epistemic norm

that an agent’s degrees of belief in a set of propositions should be representable
by a probability measure. But there is a more objective notion of probability
than that of an individual agent’s actual credences. An agent’s credences become
subject to additional norms through acceptance of general probabilities: these
importantly include the Born probabilities prescribed by a legitimate application
of the Born rule. Coherence is an epistemic norm even for beliefs concerning
unsettleable events, including the outcomes of quantum ‘measurements’ that
no-one knows, and those not everyone can know– but even these outcomes are
as objective as science needs them to be.
In all these ways I have come to disagree with Itamar’s view of probability

in quantum mechanics. I only wish he could now reply to show me why I
am wrong: we could all learn a lot from the ensuing debate. Let me finish
by reiterating two important points of agreement. There is no BIG quantum
measurement problem: there is only the small problem of physically modeling
actual measurements within quantum theory and showing why some are much
easier than others. A quantum state is not an element of physical reality (|ψ〉 is
not a beable); it is a book-keeping device for updating an agent’s credences as
time passes or in the light of new information (even if there is no actual agent
or bookie to keep the books)!
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